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Abstract

In WP1, among other, (laminar-to-turbulent flow) transition models for solvers of the RANS equations will
be developed and their adjoint codes will be programmed and used in shape optimization problems.
This work will be done by three NEXTAIR partners, namely NTUA, DAV and INRIA using different codes
and different adjoint methods. NTUA used the in-house GPU-accelerated PUMA code, based on
vertex-centered finite volumes. DAV used code AETHER that uses the finite element method on
unstructured grids. The fransition models used are four variants of the ’Y—Regt standard model, coupled
occasionally with the Spalart-Allmaras and k —w S.ST turbulence models or stability analysis with the
eN approach (only DAV). Very good comparisons among codes and measurements in the NLF(1)-0416
isolated airfoil case are presented. Regarding optimization, NTUA is using continuous adjoint, whereas
DAV and INRIA discrete adjoint. The developed adjoint codes have been used first to verify the
accuracy of the computed sensitivity derivatives which is adequately demonstrated in this report. It
is inferesting to note the very good agreement between not only absolutely different flow solvers but,
also, continuous and discrete adjoint. Once the agreement of the computed gradients of objective
functions with respect to the design variables has been verified, next step is the use of these tools to
run demo optimization cases.
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1 Contributions by PUMA

1.1 Transition Modeling in PUMA

1.1.1  The URANS Equations for Compressible Flows
In the URANS equations, the mean flow equations for compressible fluid flows are solved in the form

aU 8 InV 8 VIS
RMF— 1 =0 1.1.1
= T B B a.1b

Eqa. is solved for the conservative flow variables Uy, = [p pv; pvs PU3 pE]T, where p stands
for the fluid density, v,,, ( =1,2 3) being the velocity components and E the total energy per
unit mass. In Eq. - Y = [pug pokvy+PS1k PURVy+ POk PUKUs+DPO3K pULhy] are the inviscid
and V's = [0 Ty Tok T3k U Tk + qx] the viscous fluxes. p, h; stand for the fluid’s pressure and tfotal

Ove | Oum _ 75 m%) is the stress

en’rholpy and dg,, is the Kronecker symbol. Tg, = (1 + i) ( g+ G

tensor, g, =Cp <Pr + Prt> gg is the heat flux, where u, ; are the molecular and turbulent viscosity,

respectively. Pr, Pr; stand for the constant Prandtl and turbulent Prandtl number and Cp is the fluid’s
specific heat capacity at constant pressure. For a perfect gas, temperature 7' is related to p and p
through the equation of state p=pR,T', with R, being the specific gas constant.

Turbulent viscosity p; is computed either by employing the one-equation Spalart-Allmaras (34) or
the two-equation Menter's k—w S ST 26) turbulence models.

For the Spalart-Allmaras model, (34), an additional PDE is solved for 7, namely

p_Opp)  Opve) pf O o 9 v
B == T o, o | YT 50 | T 2y 0y

-\ 2 (1.1.2
O~ C 1
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where A is the distance of each point within the flow domain from the closest solid wall, and Mt is

given by it = pv fy,. Ea.| 1.1.2 |is supplemented by the following relations (34): x = v oo fo = W’

1

v, & o fo 14, | ©
Jv,=1 1+va C= \/Ekémsqu Do a; :<+%'fw:g (M) CG=T A+ Cuy (T6_7')'
r = min <10, = w) fi = pir, fuy = crye=X. Also, ¢y, = 7.1, ¢p, = 0.1355, cp, = 0.622, Coy =

wo =0.3, Cuy =2.0,0=2,£=0.41, ¢;; =1.2, ¢, =0.5
On The o’rher hand, the Menter’'s k—w S ST model, (26), solves two PDEs for the turbulent kinetic
energy k and the specific dissipation rate w,
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This model combines the standard k—w and k—¢e models, so any constant ¢ is blended using func-
tion FY (its definition is given below) which is equal to 1.0 close to rigid walls and 0.0 far from them as
follows: ¢ = Fy ¢y + (1—F} ). Upon solution of Eq.| 1.1.3] 41 is computed as piy = —L24K — The

max (ajw,5F2)

model is supplemented by the following relations and constants: F; =tanh (mm (arg%l, 10) ) Fy=
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CDy, = max (—2’”“2 DOk Bw 6_10>, P, = min (P, 108* pkw), Py = j13S? — %pk%mg%:, S =

tanh (mm (arglzm, 100)),argpl =min (maa: (

w Oz Oxy°

V2S5 Sian. Sim =} (G + 55 ), 011 =0.85034, 742 =05, f1=0.075, 31 =5/9, a1=03L,
k2 =10, 0, =0.85616, B=0.0828, 7,=0.44, B*=0.09.

1.1.2 The v—Regt Transition Model

The above two turbulence models are coupled with the two equation v—Regt fransition model, (19).
Two additional PDEs are solved for the transition intermittency v and the transition momentum-thickness
Reynolds number Rey;. These are

5
o) 9y 0 [(MM) 07} P 4+ By =0

ot Oxy, oxy, oy 87%
RRe"f B 0 (pReat) N 0 (kaR€9t> B 0 004 (it ) 8Reet (1.1.4)
T ot Oy, oy, |70 TR T,
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The original ’}/—Regt fransition model by Langtry and Menter in (19) and extended to accommodate
stationary crossflow effects in (18) was developed for the k—w S.ST turbulence model. In (14, T3], 28)
source terms were modified for this fransition model to collaborate with the Spalart-Allmaras model.
Expressions of P,, E., Pp; and Dgcp., as well as their inferaction with the turbulence models
follow. Four transition model variants are used, Sec.[1.1.2] presents the SST-2003-LM2015 transition model
coupled with the k —w SST model and Secs. [1.1.2] [1.1.2] and [1.1.2| the SA-noft2-Gamma-Retheta,
SA-LM2015 and SA-sLM2015 transition models coupled with the Spalart-Allmaras model.

The SST-2003-LM2015 Transition Model
In the original v — Reg; transition model, (19, [18), which is coupled with the k—w S ST" model, the
source terms for the v equation are defined as follows:

P’y = pCa15 V YEonset (1_661’7) Flengtha E’y = pcazg'YFturb (0627_1)
where S and ( are the strain rate and the vorticity magnitude, respectively. Also,
Fonset =max (Fonset2 — Fonsetss 0)7 Fonsetz =min [max (Fonsetla Fslnseﬂ) ) 2]
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Flength and Reg, are functions of Reat based on the following empirical correlations:

_(Buw\? A2w
Eengthzﬂengthl(l - Fsublayer) + 40F3ublayer; Fsublayer =€ (0'4) ) w = /;)OOM
398.189¢ 1 —119.270¢ 4 Reg; —132.567¢ S ReZ, ,if Reg; <400
263.404—123.939¢ 2 Rep, +194.548¢7 Re2,
Fiengini={ —101695¢°Re}, ,if 400 < Reg; < 596
0.5— (Regt —596) 3¢ | if 596 < Reg; < 1200
0.3188 ,if 1200 > Reg;
( Regs—396.035¢24120.656¢* Reg, —868.23¢ 6 Re2,
Reg.={ +696.506e =9 Rej, —174.105¢ 12 Rej, ,if Reg; < 1870
Reg—593.11— (Regt — 1870) 0.482 if Regy > 1870

In the destruction term £, Fy,, is used and this is defined as

()

The source terms Pg’t and Dgcr inthe Regt equation are expressed as

Fturb =€Xp

Ppr=p (Regf’t—f?eet) (1-Fyp), Dscr = Ce,tﬁccrossflow min (RQSCF — Rear, O) Foro

Cot
T T

The blending function Fy; and the timescale 1" are defined as

AN —1/ce, )
Fy; =min [max Fyake exp | — <5> 1= <z—1;252) ]71]
Re,\? pwi’®
Foke=exp —(105) , Re,= 1
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Regqt is a function of the turbulence intensity T'u and the pressure gradient parameter Ag:

\/2k/3 p0?d|U| d|U| w,,v, v

Tu=100 Ag=— =2 t__T 1.1.5
“ Ul T 4 ds 0 ds |U]? Ozn, (19

eq _ J(1173.51 — 589.428Tw + 0.2196/Tu?) F (Ng) ,if Tu < 1.3
Rey = —0.671 . (1.1.6)

73315 (Tu — 0.5668) "7 F (\y) JfTu > 1.3

where
2 3 _ (Tu 1.5} . <

P () = J 1 (1298620 +123.66)5 +405.6893]] exp |-(F4)"°] it <0 a1

1+0.275 [1—exp (—35X9)] exp (—1%) ,if Ag >0
Rey? is an impilicit function of 6 through the presence of g since Rey’, = #. Equations| 1.1.5{ 1.1.7

can be solved by iterating on the value of . For numerical robustness, A\g. Tu and R€Zt should be
limited as follows:

—0.1 < A\g < 0.1, Tu>0.027, Rel > 20
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The stationary crossflow instabilities are present mainly due to the surface roughness (hy.,s). (18).
Regarding the source term related to the stationary crossflow effects Dgc . Fyio stands for a crossflow
sink term, active only inside the laminar boundary layer. Timescale T is limited for robustness reasons
based on the local grid length L,

_p0: U]

h
Resop =525 =—35.088 ln< 9’”> +319.51 + f (DHeopy) — f (DHep-)
Oafh t

DHcp-—
f (DHcpy) = 6200DHcp + 5000 (DHery)?, f (DHep-) = T5tanh (oofis)

DHCF+ = max [+ (0.1066 - DHCF, 0)], DHCF_ = max [— (0.1066 - DHCF, O)]

sreamwiseA =
DHer = Her |:1 + min <ljj704>:| , Hop = Ct|IJ-|7 Cstreamwise = ‘U ’ C‘

500p  pL? )
27
p|UF (1 + pe)

The model constants are ¢, = 2, ¢q, = 0.06, ¢y =1, ¢, =50, ¢y =0.03, oy =1, 09y = 2.
Cerossflow = 0.6. The modification to the intermittency for this to predict transition induced by flow

separation is
. Re
Vsep = IM1IL <2 max [07 <V> - 1:| Freattach 2> Foy

3.235Reg.
(B
20

The following modifications to the source terms of the k—w SST model,

Fyip = min (Fwak6 exp (— (A/6)4>, 1), T = min (

Freattach =€xp y TYeff=IMax (’Yv ’Ysep)

Pk = ’YeffPK; ﬁk = min (mam (’yeff,o.l) y 1) Dk

AVk _(By\®
P fv F3:€ (12%)7 Flzmax(FIOTigaF:i)

R, =

are necessary where Py, Dy, Flom-g are the original production and destruction terms and the blending
function for the k—w S.ST model.

The SA-noft2-Gamma-Retheta Transition Model

(141,113) proposed slight modifications to the original V—Regt transition model of Sec. in order
to couple it with the Spalart-Allmaras model. The new model is denoted as SA-noft2-Gamma-Retheta.
These modifications refer to the Fopset, Flength and Reg. correlations and the Fy; term,

Fonset =max (FonsetQ _Fonset?)a 0)7 Fonset2=min [max (Fonsetla F;lnseﬂ) s 4]
Rr\*

2— | — 0

( (2.5) ) ’

Flength = min (exp (7.168 — 0.01173Re9t) 0.5, 3000)

Re, _

F, =— R
) onsetl 9 193R€90 ; T [

Fonsets=max

Reg, = min (0.615Regt 4615, Regt)
_ é ! , 1 _ 7_1/052 2 , 1
0 1—1/ce,

Fy; =min [max [exp
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In the Spalart-Allmaras model, the production term of Eq. is multiplied with .7 ¢, f1, is set to
zero and the following modifications to its source terms are made:

~ 2 ~
- L. U - ) v
Po = tpcn 3. Do = penfu () + 5=1C+min(s -]+ 212
; U
T:{lo ~ ,lfm<0
mzn(10,§H2A2> i 5555 =0

Crossflow effects are not present. The rest of terms are similar to those described in Sec.[T.1.2]

The SA-LM2015 Transition Model

In (28), the original v—Regt transition model proposed by Langtry and Menter (Sec. was
modified by Piotrowski and Zingg and coupled with the Spalart-Allmaras model. The strain rate
magnitude .S was replaced with vorticity (, in the production term of the intermittency equation, in
order to enhance the stability near the laminar separation bubbles, (28). This model is denoted as
SA-LM2015. The production and destruction terms for the intermittency equation read

P’y = PCay FlengthFonsetgﬁ (1—061’7) ) E’y = pCay FrursCy (6627_1)

For the v equation, the following modifications are made compared to the SST-2003-LM2015 transition
model:

: 4
Fonset =max (Fonset2 _Fonset3a 0)7 FonsetQ =min [maX (Fonsetla Fonsetl) ) 4]

Rr\® Reg pA%S i
2—\ 5= 0 Fonset1 = —=——55—, Res = ——, Rp=—
( <2.5> ) ] N 9193Res. 0T w0 T

Fopset3 =max

while, for the Reg; equation,

Fyt = Fyake €Xp , Fuake =exp [—Res/1.¢5]

A 4
- <5>

In order to interact with the Spalart-Allmaras model, the production term of Eq. is multiplied
with 7y, ftQ is set to zero and the following modifications to the Spalart-Allmaras source terms are made:

~ N\ 2
~ ~ v
Py = vpcy, S, Dy = pew, fu (A>
The rest of terms are similar to those described in Sec. [1.1.2

The SA-sLM2015 Transition Model

The expressions of the source terms in the transition models presented in Secs. [T.1.2] [T.1.2] [T.T.2]
include min. and max. operators and conditfional statements. These non-smooth functions can lead to
discontinuities, during the numerical solution of the primal and adjoint equations. In (28), to overcome
this, smmooth approximations to the min./max. operators and simplifications o the conditional statements
were infroduced by Piotrowski and Zingg based on the SA-LM2015 model, giving rise to the SA-sLM2015
transition model.
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The smooth min. /max. operator function qup (a positive real number p > 0 is used for the max.
operator and a negative one p < 0 for min) for two variables x1, x2 is described as

. ! switc.
f 0¢( )— @ a'f’a_6‘>_w
orp>U @p (T1,x2) = a+ log(l—&—ex};[p(ﬂ—oz)}) ,else

. I switc
for p<0: ¢, ( )= g 7'f’a_6|>_w
or p<0: @p (T1,x2) = 8+ log(l—&-exl;[p(oé—ﬁ)}) , else

o = max (v1,72), B =min(z1,22), Pswiteh = 107

Then, the production and destruction terms of the v PDE read

M~/MRe
P”/ = PCay FlengthFonset ¢—300 <C7 20) \ﬁ (1 - 061'7)
M~/M Re
E., = pcayFrurb | 9—300 (C; 20) Y (Cez’Y —1)

Fonset: Frurp. Flength and Reg,. are expressed as

tanh [6 (Fynser1 — 1.35)] + 1 Res \?
Fonset = [ ( H )] 5 Fonsetl = \/< 5 ) + (RT)2

2 2.6 Rege
44— (0.50—3'10—4 (Regt —596))

F’length =44-—
(1 + ﬂengthl ) /e

) F’lengthl =exp <—3 : 10_2 (Regt — 460))

Regt
240

Rey. = O.67Regt + 24 sin ( + 0.5) + 14, Fiyrp = (1= Fopset) exp (—Ryr)

Regarding the Reg; equation, the expression of F (Ng) is

F (Ag)y = 1+0.275 [1 — expl ™| exp™ 8%, F (M), = da00 (F (No)y 1)
F (Ag)s = 1+ [12.986)9 + 123.6603 + 405.6893] expl~ (779"
F (Ng) = 300 (F (M), ' (Ng)3)

The coupling with the Spalart-Allmaras model is the same as for the SA-LM2015 model,
. _ 7\ 2
Py =ypcy, SU, Dy = pew, fuw <A)

1.1.3 The Hamilton--Jacobi Equation

An additional PDE must be solved as part of the system of primal equations. This is the Eikonal or
Hamilton--Jacobi equation computing the distance A field from the closest solid walls needed for
the source terms of the turbulence and fransition models. Distances are to be differentiated in the
development of the adjoint method and this is why this should be included into the primal equations.

This is written as 9 9A 9 9A
A A A— =) -1= 1.1
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1.2 Boundary Conditions

Along the solid walls, the no-slip condition v, = 0 is applied. For the Spalart-Allmaras turbulence

model, 7 =0, for the k—w SST model, k=0 and w= ,B?OADQ , while for the v—Regt fransition model

3% =0 and % = 0. Along the inlet boundary, for the mean-flow equations, four (in 3D) quantities
are defined and imposed as Dirichlet conditions and one is extrapolated from the domain interior.

IN
In the Spalart-Allmaras model, the inlet viscosity ratio (%) is specified. In the k—w SST model,

the inlet viscosity ratio and the turbulence intensity (1) are specified whereas k' = 1.5T2 [U|?
and w!N = k/ut. For the ’)/—Regt transition model, ’yl N =1 and ﬁegt is computed based on Eq.
[ TT.6] For the outlet boundary, one quantity is imposed as boundary condition and the rest four
are extrapolated from the interior domain for the mean-flow equations, while for the turbulence and
transition models, zero Neurmnann boundary conditions are imposed to 7, k, w, v and Regt. The farfield
boundary is treated as a combination of inlet and outlet, depending on the local velocity.

1.3 Discretization of the Governing Equations and Numerical Solution

PUMA (7) solves the flow and adjoint equations on discretized unstructured/hybrid grids using vertex-
centered finite volumes. Inviscid fluxes are discretized based either on a second-order upwind scheme
(Roe scheme, (29), or Flux Vector Splitting, (35)) or a central difference scheme, (16), with a blend of
second- and fourth-order differences artificial dissipation. All discretization schemes are second-order
accurate.PUMA runs on a GPU cluster and employs either the MPI protocol for data communications
between GPUs on different computing nodes or the shared on-node memory for memory transactions
between GPUs on the same node. High parallel efficiency is achieved by the use of Mixed Precision
Arithmetics (MPA) (7). All residuals are computed in double precision, but the memory demanding
L.H.S. operators are stored in single precision accuracy.

1.4 Validation of the Primal Solver

Some validation and verification test cases, for the primal solver (with emphasis laid on the transition
model), are presented. Code validation/verification refers to the ’y—Regt fransition model (all of its
variants) and its coupling with the k—w SSI" and the Spalart-Allmaras turbulence models, as explained
before. The purpose is to examine the accuracy of the transition models implementation in the PUMA
code, (17), in comparison with other computational results and experiments.

Three test cases are considered: a flat-plate, the NLF(1)--0416 isolated airfoil and the NLF(2)--0415
infinite swept wing. The flat plate and the NLF(1)--0416 case are validated using all transition models
(SST-2003-LM2015, SA-noft2-Gamma-Retheta, SA-LM2015 and SA-sLM2015). The investigation of the
NLF(2)--0415 swept wing focuses on crossflow instabilities due to surface roughness.

1.4.1 Flat-Plate Test Case

The Schubauer and Klebanoff (30) flat plate experiment is a useful validation test case for transition
models. The case has a low freestream turbulence intensity and corresponds to natural transition. A
computational grid of ~ 17K nodes is used. The inlet boundary conditions are summarized in Table
The non-dimensional first wall distance is y < 1.

The skin friction coefficient along the flat plate is compared with experimental data and, also,
numerical results obtained by Langtry & Menter (19) (for the k—w S.ST), Fig.[1] A very good agreement
with the experimental data is obtained for all fransition variants.
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Quantity | s&K |
Velocity (m s_l) 50.1
Turbulence Intensity (%) 0.18
Viscosity Ratio 1
Density (kg m_S) 1.2
Dynamic Viscosity (10_5 kgm™! s_l) 1.8

Table 1: Flat Plate: Inlet Conditions for the flat-plate case at 0.25 m upstream of the leading edge.

0.010 : : N N
Experimental |
S&K Fully Laminar
0.008 |- Fully Turbulent - - - o

Langtry—Menter - —
PUMA-SST-2003-LM2009 ———
PUMA-SA-noft2—Gamma-Retheta ———
0.006 - PUMA-SA-LM2015 ———

| PUMA-SA-sLM2015 ———

0004 |

0002 \ e

0 j L
0e+00 1e+06 2e+06 3e+06 4e+06 5e+06
Re,

Figure 1: Flat Plate: Skin friction coefficient as computed by the programmed add-ons in PUMA for four
transition models for the S&K flat plate case compared with experimental (30) and other numerical (19)
(labelled as Langtry-Menter) results. Fully laminar and turbulent results are also included.

1.4.2 Flow around the NLF(1)--0416 Airfoil

The NLF(1)--0416 is a low speed Natural Laminar Flow (NLF) airfoil for general aviation applications. The
airfoil was tested in various Angles of Attack (AcA) between —17° 1o 17° and experimental data for
pressure, lift, drag and momentum coefficient are available in (31). The flow conditions are Re =4 - 106,
Mo =0.1 and Tu=0.15%. The fine mesh of (T1) is used.

The convergence histories of the residuals of the ’y—Regt transition model variants are presented in
Fig. for the fine grid and AoA = (0°. Regarding the 7y equation, the residuals of the SST-2003-LM2015,
SA-noft2-Gamma-Retheta and SA-LM2015 models drop by ~3 orders of magnitude while, for the
SA-sLM2015, a deep convergence is achieved with a drop of ~12 orders of magnitude. The improved
numerical behaviour of the SA-sLM2015 model is due to the smooth approximations that replaced the
min./max. operators and the conditional statements. A deep convergence of the Regt equation is
obtained for all tfransition models. It should be noted that the comparison of the convergence histories
aims at demonstrating the numerical behaviour and robustness of the 'y—Regt transition model variants;
the differences in the convergence rates do not affect the quality of results since all transition models
converge, more or less, to the same C7, and Cp values. In view of the adjoint solver, the difference in
convergence is significant as the adjoint method requires residuals that vanish. A comparison of their
performance against experimental data follows.

Fig. 3| presents the C, value w.r.t. the AoA, as well as C, vs Cp polar diagrams for the same
four transition models. Results from fully turbulence runs (Spalart-Allmaras and k& —w SST) are also
included. In all cases, the use of transition model improves the quality of the results and a good
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Figure 2: NLF(1)--0416 Airfoil: Relative residual convergence histories for the four transition model on the fine
grid and AoA = 0°. 7 and Regt equations.

agreement with the experimental data is achieved. The skin friction coefficient along the airfoil surface,
as well as the range of the fransition point location (gray area) based on the experimental data, is
presented in Fig. |4l It is seen that, all transition models accurately predict the fransition location over
the suction side, small differences are present over the pressure side where the SST-2003-LM2015 and
SA-noft2-Gamma-Retheta models slightly delay the fransition onset.

2.50
200 250 I R R
' e R 2.00 [
1.00 o : 3 3 I 1.00 | T : Experime:mil-lz :
C, 050 i i ] ! A SST-2003 - — - |
- A CL 0.50 |
U R T - B H I 0 Mgl e v —
: : xperimental : b : : : ;
-050 W SA - — " —0.50 [ g b
; ; SST_2005-LM2015 : S
—1.00 |l SA-nON2-Gamma-Retheta —— 100 e T B g
. ; ; SA-sLM2015 ——— i | ] I I i
-1.50 | | | | | | | -1.50
-20 -15 .10 -5 0 5 10 15 20 0 0.005 0.010 0.015 0.020 0.025 0.030
A0A (°) Cp
(a) (b)

Figure 3: NLF(1)--0416 Airfoil: Comparison of the (', for several angles of attack and polar diagram|(b)
(Cr, vs Cp). The use of a transition model with both the k—w S ST and the Spalart-Allmaras turbulence
models improves the accuracy of predictions. Results are compared with experimental data (31).

1.4.3 Flow around the NLF(2)--0415 Infinite Swept Wing

For the NLF(2)--0415 infinite swept wing, experiments reported by Dagenhart and Saric, (12), provide
data regarding the transition location for Ao A = —4° and for a wide range of Mach and Reynolds num-
bers. The simulations performed here are for M =0.15 and Re =[1.92,2.19,2.37,2.73,3.27,3.79] -
10, the turbulence intensity level is Tu = 0.20%. The NLF(2)--0415 infinite swept wing consists of the
NLF(2)-0415 airfoil extruded with a 45° sweep angle. The grid consists of ~ 204K nodes, three similar
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Figure 4: NLF(1)--0416 Airfoil: Skin friction coefficient distribution along the pressure and suction sides of the
airfoil as computed using PUMA with various transition models, on the fine grid. The area in grey represents
the range of the transition location based on the experimental data, (31).

sections are created with ~ 68 K nodes each. The maximum y+ value of the first off the wall nodes is
y+ =0.7. In order to simulate the infinite swept wing. periodic boundaries are imposed.

The transition locations for h..,s = 3.3 pym roughness as resulted from the simulations with the
SST-2003-LM2015, SA-LM2015 and SA-sLM2015 models are compared with the experimental ((12)) and
numerical ((18, 28)) data in Fig. |§| All fransition models accurately predict the transition locations for all
Reynolds numbers except for the lowest one. This discrepancy is also present in the numerical results of
the original models, (28).
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Figure 5: NLF(2)--0415 Swept Wing: Comparison of transition location for several Reynolds numbers as
computed with PUMA, Langtry&Menter (18) and Piotrowski&Zingg (28) and as exprerimentally measured.
(12).
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1.5 The Continuous Adjoint Method for Transitional Flows in PUMA

In continuous adjoint, the objective function J is augmented by the field integrals of the product of the
primal equations’ residuals and the adjoint variables over a finite volume €, resulting to the augmented
objective function

Jaug=J + / U, R A+ / Uu R dQ+ /’yaR'YdQ+ / RegReordQ+ / A RAAQ 151
Q

In Eq. U,,(n =1,...,5) are the mean-flow adjoint variables (in 3D) and v, Y. Re, and
A, are the adjoint Spalart-Allmaras model variable, the adjoint intermittency, the adjoint transition
momentum-thickness Reynolds number and the adjoint distance, respectively. The adjoint fields, as
extra degrees of freedom, are needed fo avoid computing the derivatives of the primal fields w.r.t.
the design variables; this is achieved by formulating, discretizing and numerically solving the adjoint
equations. Upon convergence of the flow equations Jaug =J and, consequen‘rly ‘U = 5‘;‘;‘;9 are the

sought derivatives. Differentiating Jaug w.r.t. the design variables b; results

0Jaug 6T SRy SR” SR . 6RR‘3“
5b; _5bz-+/ " 5b; dQ+/ o /7‘1 5b; dQ+/Rea /
Q Q Q

Q Q

-~

IMF TSA Ty TRegy IA

(1.5.2)

Any further development relies on the relationship between the partial (%) and total (%) derivative

of any quantity ¢, given by
0P 0P 0P dxy

b by | D ob,
dxy,

where, in the discrete sense, 35; stand for the grid sensitivities, as well as the expression of the total
derivatives of the spatial derivatives of ® which reads

B0\ _ o (s o0 o (o wes
ob; \Oxy )  Oxy \ 0b; Oz, Oxy \ Ob; e

ug

(1.5.3)

During the mathematical development of 6?2 , volume and surface integrals containing deriva-
tives of the primal variables w.r.t. b; appear. Seﬁiné these multipliers to zero, the so-called field adjoint
equations arise. A similar approach is followed for the surface integrals leading to the introduction
of the adjoint boundary conditions. Surface or volume infegrals which include variation of geometric
quantities contribute to the final expression of the sensitivity derivatives.

1.56.1 Field Adjoint Equations and Adjoint Boundary Conditions

Eliminating all volume integrals that contain variations in the mean-flow variables, the Spalart-Allimaras
variable, v, Reg; and A leads to the mean-flow field adjoint equations, the adjoint Spalart-Allmaras,
adjoint ¥ — Reg; equations and the adjoint Hamilton-Jacobi equation. The field adjoint equations for

12
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transitional flows, (17), read

ov,

RY = — App— 5 — Ko + KA+ lcg;f%“ =0 (155 q)
T
; OV, 0
RVa — —v— gSA Jdif f + gSA src gut + gﬂty’Y_REGt ﬁ =0 (1.5.5b)
oxy, o
0 N -
R =—y, 83 — HyReondil [y qpr-Reosre | gyshsre — (1550¢)
RRBa v 8Rea . H’Y*Regt,dlff + ,H'yfRegt,src + ,HSA,src -0 (1.56.5d)
N k éhsk Regy Reg: Reet - -
0 0A 5
RA ——9 <A ) + MSA,S?"C + M'y—Regt,src =0 (155e)
8:ck 8xk
n=1,....,5, m=1,...,5, k=1,...,3 where the terms K,,, K>} and Kot result from

the differentiation of the mean-flow viscous terms and that of the turbulence and transition model.
Regarding the field adjoint equation to the Spalart-Allmaras model, GAdifT gnd QSAMC are from
the differentiation of the diffusion and source terms of this model. G*t and GHtY ot include the
confribution of the mean-flow and v — Regt to . In the field adjoint equation to the v — Regt

—. —. A, A,
model, terms H%Regt,dsz/%']y%e]%eet,dsz fH'y Regt,STC/H’Y—REQt7S7’C nd fHS STC/HS 57C yre coming
ot ot

from the differentiation of the v — Reet diffusion and source terms and the Spolqrr—AIImoros source
terms. Regarding the adjoint Hamilton--Jacobi equation, terms M5457¢ and MY 1t€6t:57¢ come from
the differentiation of the turbulence and transition model. Terms coming from the differentiation of the
transition models differ among each variant.

All volume integrals resulting from the differentiation of qug were treated giving rise to the field
adjoint equations and only the surface integrals remain. These integrals may contain derivatives in
geometric quantities w.r.t. b; orin the flow variables along the boundaries; the former contribute directly
to the sensitivity derivatives, while, the latter must be eliminated giving rise to the adjoint boundary
conditions. Moreover, the primal flow boundary conditions should be taken into account during this
freatment, meaning that the derivatives of all imposed quantities w.r.t. b; are zero. The remaining flow
quantity variations are grouped and their multiplier is set to zero.

1.56.2 Expression of the Sensitivity Derivatives

After satisfying the field adjoint equations and their boundary conditions, the remaining field and
surface integrals comprise the formula of the gradient of J. The gradient of J becomes
0J

— =T+ I +ISD + I (15.6)
51)2' 0t

where T2, ISP, Isﬁée and Z3? give below:
ot

0 m” 0 ‘”S L Ov 0T 0 (éx
ISD:/ \I’n o adj m adj l dQ
MF [ ( Oy &rg >+(ka Oy U Oxy ) | Oxp \ Ob;
Q

. -\ 0(n.dS 6 (n.dS 6 (n_dS
— /‘Ifn( ok — ;ILIIZ)((;;%)‘F /‘I’k+1p(5’;)i)—/\lfm1wknkng(£i)

SNoSIip SNoSIip SNoSIip

o (t,,dS d(n,,dS
- /‘I’mtq’feknktetm(gz)Jr /\pﬁlananktétm%

SNoSIip SNoSIip
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1 [0 (pva) o 0 ([dxy
_o—/ on, HUFe) 5 ma <5b >dQ

01,2/ OWup) Ov  _ _ 0 (0v 0 ([ dxy 40
o ozrr 0y oz, \oz:) | 0z, \ b,
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SNoSIip
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Q

0 Mt 8’7 a'ya 8’7 0 oy
/[%6905 |:<M+ > a$k:| (M—’_ ) 8xk 8.%[ 8xk 5bi de
Q

-0 dReg; ORe, OReg; | 0 (x4

“ — dQ
+/ fe Oy lae’t(MjL'ut) oxy, ] Ue’t(MJth) Oxy Oxy al'k(&)i)
Q

’Y—Reet
VU Qv O (O / ov, Ov,, 0 (dxp

a S Q mEkqry Q

Q/ ReaCavien 72 9z, o2 <5b )d ¢y By D \ 0b; )

5 C’Y—Reet
Q Q

_|_

U ™ 9y Dy \Ob; S Dy O

dv §(n,.dS _ OReg; 6 (n,dS
(o) P [ ot T

Az ob; oxp, ob;
ShNosip SNosiip
OA OA 0 (dxy
X=—2[A, dQ
A Oy, Oy Oy, (5b»>
Q

Expression for the rest terms are omitted.

1.6 Verification of the Adjoint Solver and Optimization

In this section, the formulation of the adjoint method for the SA-noft2-Gamma-Retheta, SA-LM2015
and SA-sLM2015 transition models is verified, (17). The NLF(1)--0416 airfoil at AocA =2.03°, extensively
validated against experimental data in Sec. [T.4.2] is used. The airfoil is parameterized using the 8 x 7
NURBS control lattice of Fig. |§L 24 design variables in total. The accuracy of the sensitivity derivatives
regarding the drag (C'p) and litt coefficient (C'1) is verified against finite differences which are assumed
to give the reference derivatives. The impact of the “‘frozen fransition’” assumption (according to
which the adjoint fo the transition model equations is not formulated and solved) is also investigated.
The verification of the sensitivity derivatives and the shape optimization of the airfoil are performed with
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each transition model. The two quantities of interest are expressed as

F
J=3———, F= /(pnk — Tem N, Tk) dS
§pooUooC
Sobj

where F' stands for the aerodynamic force (drag or lift) and r, is the direction of the force component,
for drag rP = (— sin aise, €OS (oo ) aNd lift 7F = (€OS (oo, SIN (oo ).

Figure 6: Optimization of the NLF(1)--0416 Airfoil: Parameterization of the airfoil. Control points in blue remain
constant while red ones are allowed to move in the chordwise and the normal-to-the-chord direction.

The sensitivity derivatives of Cp and C, computed by the adjoint method, with and without the
“frozen transition’” assumption, are compared with FDs in Figs. [7d] [7b] and 7] for the SA-noft2-Gamma-
Retheta, the SA-LM2015 and the SA-sLM2015 model, respectively. The first half sensitivity derivatives
correspond to the x coordinates and the second half to the y coordinates of the CPs. The adjoint
method reproduces the outcome of the finite differences with high accuracy for both Cp and C7,.
On the other hand, the *‘frozen transition’” assumption is harmful to the gradient accuracy; higher
deviations of the **frozen transition’” sensitivity derivatives can be seen for the C'p sensitivity derivatives,
as occasionally they even have the opposite sign (i.e. design variable with ID 21).

After verifying the grdients, the optimization of the NLF(1)-0416 airfoil for min. C'p under the
double-sided inequality constraint that C, remains close to that of the baseline airfoil (should not
change by more than £1%). is carried out. An additional inequality constraint, requiring that the
airfoil area should not drop below 90% of the baseline one is imposed. The optimization is performed
three fimes, once for each transition model variant; the convergence histories are plotted in Fig.
The optimizations based on the SA-noft2-Gamma-Retheta, the SA-LM2015 and SA-sLM2015 models
resulted to ~ 7.5%, ~17.4% and ~ 28.7% reduction of the Cp value, respectively, maintaining the
C|, close to the baseline one by 41%. The volumes (areas) of the optimized airfoils reduce by 10%.
reaching the minimum allowed value of the constraint value. It seems that the optimization runs based
on the SA-noft2-Gamma-Retheta and the SA-LM2015 transition models have been trapped into local
minima, in the sense that there are several airfoils with the same target values, meeting the imposed
contraint.

The geometry and the skin friction coefficient distribution for the baseline and the three optimized
airfoils are presented in Fig. E} All optimization runs resulted to an airfoil geometry with almost flat
pressure side, Fig.[9a] Differences are located at the suction side, where the optimization relying on the
SA-sLM2015 model increased and shifted the curvature to the trailing edge. These are reflected on the
skin friction distribution of the optimized airfoils. Regarding the optimization on the SA-noft2-Gamma-
Retheta model, there is a slight change in the C f distribution, Fig. Regarding the optimizations
based on the SA-LM2015 and SA-sLM2015 models, Figs. and the transition location on the
pressure side is more or less the same for the two dirfoils, shifted by ~ 20% chord downstream. On
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Figure 7: Optimization of the NLF(1)--0416 Airfoil: Comparison of the Cp (left) and C'p, (right) sensitivity
derivatives computed by the continuous adjoint method, with and without the **frozen transition” assump-
tion, with finite differences (FDs). Derivatives based on the [(@)] SA-noft2-Gamma-Retheta, [(0)] SA-LM2015
and SA-sLM2015 transition models.
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Figure 8: Optimization of the NLF(1)--0416 Airfoil: Evolution of the objective (C'p) and constraint (C'7,)
functions during optimizations based on [(@)] SA-noft2-Gamma-Retheta, [(0)] SA-LM2015 and [(c) SA-sLM2015
transition model.

the other hand, transition locations over the suction side differ; the optimized geometry based on the
SA-sLM2015 model has the largest shift (~ 17% chord) leading to a greater C'p reduction.
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Figure 9: Optimization of the NLF(1)--0416 Airfoil: Baseline and optimized airfoil geometries. Skin friction
coefficient distribution along the airfoil surface for the baseline and the optimized with the SA-noft2-
Gamma-Retheta, SA-LM2015 and SA—sLM2015 transition models geometries.
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2 Contributions by INRIA

2.1 Vector form of the RANS Equations

The RANS equations can be rewritten in the following differential form:
Wi+ V- (FE-FV) =0, @211

where W is the vector of conservative variables
T
W = (p, pu, pv, pw, pE)" |

while FE and FV are the convective and the viscous flux vector, respectively defined as

FE(W) = (pu, puu+ per, pvu+pesy, pwu+pes, u(pE +p))" ,

Vi . . 2.1.2)
FYW)=(0, T1, T2, Ta, T -u+ A+ M)VT)

with (e1, e2, e3) the Carfesian coordinate directions unit vectors.

The physical variables of the problem are the density p, the velocity u, the static pressure p and
the total specific energy E. The latter is defined as the sum of the flow specific internal energy e and

the specific kinetic one as
2

The fluid is assumed to be Newtonian and, via the Boussinesq hypothesis, the stress tensor T is defined
by

S

T=2(p+ ) [;(Vu + (Vu)h) 3(V -u) ]I} , 2.1.3)

where [ denotes the molecular dynamic viscosity which, for a perfect gas is usually imposed to obey

Sutherland’s law i.e., s
B T \2 [Ts +Su
= Hoo Tro T+5Su /)

Su = 110.4 K is the Sutherland temperature for dry air and the index oo denotes reference quantities.

) stands for the thermal conductivity coefficient and " for the absolute static temperature. In the case
of gases, A (resp. Ay) depends on temperature in a similar way as g (resp. ). For this reason, the
following relationships are accepted

I
A= cCp— and At = Cp—
P pr LT Ppy
with Pr = 0.72 and Pr; = 0.9 for (dry) air.
Assuming the fluid to be a calorically perfect gas,
p = pRT, e =c,T 2.1.4)

where R = R/ M is the perfect gas constant divided by the molar mass of the fluid, commonly set at
287.1J kgf1 K~ for air and ¢, is the specific heat capacity at constant volume. The latter is linked
o specific heat capacity at constant pressure ¢, by the specific heat ratfio v = ¢, / cy. set at 1.4 for
diatomic gas.

In order to close the system, u; is calculated by means of a tfurbulence model.
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Turbulence modeling: Negative Spalart-Allmaras One-Equation Model without ft2 Term (SA-neg-noft2)
The turbulence formulation considered here is the Negative Spalart-Allmaras furbulence model with
neglecting trip terms (SA-neg-noft2) (33). It consists of a convection-diffusion equation for the pseudo
turbulent viscosity variable I where the source term is obtained as a balance between a production

term and a destruction term associated with the same quantity. Specifically, when © is greater than or
equal to zero, the equation consists in

dpiv o p o aep o - 2%
+V - (pur) — =V (v +0)VD) = —=|Vo|* + ciSpp — curfup || -
ot ——— o o —— d
convection G ) } production S—
dissipation dif fusion destruction
On the other hand, when 7 is negative the following equation is solved instead
Opv - P SO Ch2P |1 12 7\
— + V- (pur) — =V -((v+ fur)Vr) = —||V7||* + cppllV xu| — cuwip| =
ot o o d
with
16 + x3
fo= o
16 — x
The turbulent viscosity is computed from:
Mt = p&fvl )
where 5 ~
v I
1= —4—=% and =— with v=—.
f'U X3 + 031 X v p
Additional definitions are given by the following equations:
X ~ 1
=1-——— and S=|[|Vxu||l+—=
fv2 1_'_va1 ” H H2d2fv2

where d is the distance to nearest wall which is computed for each vertex at the beginning of the
simulation. The set of closure constants for the model is given by

0'22/3, cp1 = 0.1355, cpp =0.622, k=0.41,
Cwlzcbl//€2+(1+cbg)/0, cw2 = 0.3, Cw3 =2, Cpy1 =7.1.

Finally, the function f, is computed as:

148\ . 7
=g ——% with g=r+4+cye (r°—7) and r=min|{—=———,10] .
fw=9 (gﬁ +C2,3) g w2( ) (Slide >
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Transitional model: Spalart-Allmaras 1-equation BCM Transitional Model (SA-neg-noft2-BCM) (9)
The transitional model considered in this work relies on a modification of the production term of the
SA-neg-noft2, which is multiplied with a ¢ infermittency function. This function damps any turbulence
production until some transition criteria is achieved, as

dov 5 ~\ 2
PY v (pui) — PV ((v + V) = P2L\V|2 + cnvpeSpr — ot fup | 2 70
ot o o d
8 ~ ~N\ 2
PY - (pud) — PV ((v + fui) VD) = L2951 + corymepl|V xul| + cotp | 2 7<0
ot o o d
with

’YBCzl—exp(—\/TT—\/T:).

T and T5 are triggering functions defined as

Reg — R 0.
lemax( eg — Reg e, )’ Ty = max <MT7 .>7
Xx1Req . X2 M

with x1 = 0.002 and 2 = 0.02.
The transition onset is based on the following experimental correlation
Rey,. = 803.73 (Tuoo + 0.6067) 1027

where T'u is the free-stream turbulence intensity and Rey is based on

Re, Re, = pd2 |V xu )

Reg = —v
= 5103 7

The free-stream boundary condition is

v
- =0.02.
Voo
Pay attention to the fact that turbulence intensity must be specified in percent i.e., if it is about
0.18% you need to set Tus, = 0.18.

2.2 RANS flow solver

The Reynolds-Averaged Navier-Stokes (RANS) numerical simulations with the Spalart-Allmaras turbu-
lence model coupled with BCM fransitional model (SA-neg-noft2-BCM) are considered here. The code
used for all simulations is WoLF, which is a vertex-centered (flow variables are stored at vertices of the
mesh) mixed Finite Volume - Finite Element solver on unstructured meshes composed of friangles in
2D and tetrahedra in 3D (3} 125, [1l. 2). This means that the convective terms are solved by the Finite
Volume method on a dual mesh composed of median cells, while the viscous fluxes are evaluated
using the Finite Element method (1. 12). The time integration considers an implicit temporal discretization.
Particularly, at each time step the RANS system of equations is approximately solved using a Symmetric
Gauss-Seidel (SGS) implicit solver, and local time stepping with local CFL is used to accelerate the
convergence fo steady state. An implicit loosely coupled algorithm is used to integrate the mean-flow
equations and Spalart-Allmaras furbulence equation separately.
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2.3 Mesh adaptation

In the mesh adaptation process, the local size and anisotropy of the mesh are prescribed using a
metric field (4., 2). A tetrahedron is said unit according o a metric if all its edges have unit length in this
metric. Similarly, a unit mesh, for a given metric field, is a mesh composed of unit elements in this metric.
This establishes a dudlity between meshes and metrics: a Riemannian metric field can be seen as the
continuous counterpart of a mesh. This framework is developed more extensively in (20, 121). In this way,
the mesh generation procedure is recasted in generating a uniform unit mesh in the prescribed metric
space.

Denoting by ./\/lop»r the optimal metric, C(./\/lopf) its complexity, i.e. the continuous counterpart to
mesh size, N a target complexity, and £ the error model for the considered application, the problem
to solve is

Mopt = argmin E(M).
C(M)=N
This non-linear process is depicted in Algorithm E] The optimal metric field Mopf used to prescribe the
new adapted mesh H is automatically deduced from the actual solution or from the actual solution
and adjoint state with different error estimates (2). In practice, an additional step is required between
the metric computation step and the mesh generation step, called metric gradation. Indeed, metrics
computed from numerical solutions are likely to show irregularities and need to be smoothed, through
a gradation process, to improve the quality of the adapted mesh (8, 16).

Algorithm 1: General mesh adaptation loop with mesh-convergence analysis

Input: Initial mesh 7—[8 , solution WOO, and complexity C°

while (C7 <= C™™) do
Inner loop to converge the mesh adaptation at fixed complexity:

1. while (i < nggqp) do

(a) Compute the optimal metric for the Qonsidered
error estimate and complexity — Mffl;

; ; P J .
(b) Apply a gradation correction to smooth the metric field — /\/li_l,
(c) Generate a new adapted mesh — ’Hf ;
(d) Interpolate the solution on the new mesh — (Wo)z ;

(e) Compute the solution — I/Vl.j

) if (Convergence check) then the loop has converged
‘ 1 = Nadep + L
else the loop has not converged
| i=i+1;
end

end

It =0T

adap ?

o o
2 HIT = Hips Wi =W

end
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Error estimate The flow solver WoLF can provide metrics for either feature-based or goal-oriented
error estimates. Feature-based adaptation aims at minimizing the interpolation error in LP norm of a
given sensor for a given number of degrees of freedom. It is easy to implements as it only requires
the second derivatives of the sensor. The goal-oriented error estimate minimizes the error of a given
engineering output functional for a given number of degrees of freedom. It is more complex because
requires a robust adjoint solver and a proper differentiation of the output functionals (2).

The objective of our study is the assessment of an anisofropic mesh-converged solution for the SA-
neg-noft2-BCM transitional model. The mesh adaptation process is performed using the mesh-adaptive
solution platform composed of WoLr, the anisotropic local remeshing software FerLo.A (22, 23], 124) and
the field interpolator INTERPOL (9).

Two cases are considered.
o 2D Zero-Pressure-Gradient Flat Plate run with the a featured-based (FB) error estimator;

e 2D subsonic flow past the NLF4016 airfoil run with the a goal-oriented (GO) error estimator.

2.4 2D Zero-Pressure-Gradient Flat Plate

The first test case considered is the subsonic flow over a 2D flat plate with zero pressure gradient.
The flow conditions are: Mach number M = 0.1443 and Reynolds number Re = 3.34 x 10°, with
the lafter based on the unit flat plate length. The Turbulence Intensity specified at free-stream is
Tuso = 0.18%. This case corresponds to the Schubauer and Klebanoff (30) and was already used
to calibrate the BCM-model 27). The FB error estimator considered is based on the L* norm of the
interpolation error of the local Mach number.

2.4.1 Assessment of an anisotropic metric-based mesh-converged solution with FB error estimator

Figure |10 shows on the leff, from a 500-verfices o a 80 000-vertices adapted mesh: (i) the mesh-
convergence of the drag coefficient C'p for the fully turbulent calculation (blue curve); (i) the
mesh-convergence of the drag coefficient C'p for the transitional calculation (red curve).

First, the fully turbulent RANS adaptive process is performed. Second, the solution computed
on a 2000-vertices adapted mesh is used to initialize the transitional calculation. We can see that
both calculations are converged at 20 000 vertices. Figure on the right shows the comparison
between the two Skin Friction coefficients on a 20 000 adapted mesh. Transition occurs shortly before
Re, = 3 x 108, according to literature.

2.4.2 Transition point mesh-convergence

Our main objective was to assess mesh-convergence solution for the BC' M-model, specifically in
terms of the position of the transition point. Figure [T0 on the right, shows that during the adaptation
process, the transition point does not oscillate but converge to a specific position. This means that this
model is robust and guarantees mesh-convergence solutions. Particularly, the reader can note that
the transition points does not change anymore since 20 000 vertices.

The resulting adapted meshes are shown in Figure [TT] On the left, adapted mesh and solution
for the SA model. On the right, adapted mesh and solution for the SA-BCM model. Both meshes
are stretched along the wall-normal direction by a factor 20, fo highlight the leading edge and the
transitional region. We can see that the adaptation process captures automatically all discontinuities in
the flow. Specifically, the leading edge is a discontinuity in ferms of boundary condition. The transition
point is a discontinuity in the solution, when passing from laminar to turbulent flow.
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2D zero-gradient pressure Flat Plate: M =0.1443 Re =3.34-10° 2D zero-gradient pressure Flat Plate: M =0.1443 Re =3.34-10°
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Figure 10: 2D Zero-Pressure-Gradient Flat Plate FB anisotropic metric-based mesh adaptation. (leff) Evolution
of the Drag C'p coefficient during the mesh-convergence process. N is the number of vertices of the
adapted meshes. (right) Skin Friction C'y coefficient on a 20 000 vertices-adapted meshes. Comparison
between fully turbulent calculation and transitional calculation.

Figure 11: 2D Zero-Pressure-Gradient Flat Plate FB anisofropic metric-based mesh adaptation. (leff)
Adapted mesh and streamwise velocity component field for turbulent solution. (right) Adapted mesh for
and streamwise velocity component field for transitional solution. Both meshes are stretched along the
wall-normal direction by a factor 20, to highlight the leading edge and the fransitional region.
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A zoom of the fransition point is shown in Figure Both meshes are stretched along the wall-normal
direction by a factor 5, to highlight the refinement at the transition point. We can see in detail as the
adaptation process dispenses the proper number of points according to the complexity of the flow.
The laminar boundary layer requires much less points w.r.t. the turbulent one, o be correctly captured.
Then, we can see the fransition to turbulence already in the mesh: the upstream region for the SA-BCM
calculation is laminar, velocity gradients are lower and boundary layer is thin. Downstream, velocity
gradients are higher and boundary layer is thick. Such physical considerations are well highlighted by
the refinement region. In the transition region, adaptation become more isotropic to capture fransition.
While being highly anisotropic before and after the transition region.

Figure 12: 2D Zero-Pressure-Gradient Flat Plate FB anisotropic metric-based mesh adaptation. (left) Adapted
mesh for turbulent solution. (right) Adapted mesh for fransitional solution. Both meshes are stretched along
the wall-normal direction by a factor 5, to the fransitional region.
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2.5 2D subsonic flow past the NLF4016 airfoil

The case considered is the flow around the NLF4016 airfoil at Mach number M = 0.1 and Reynolds
number Re = 4 x 10% based on the airfoil chord length ¢. Several experimental data are available
for Re ranging from 1 x 10% to 9 x 10°, and M from 0.1 to 0.4 (32). In these experiments a specific
roughness was opportunely sized for each Reynolds number to fix the transition point at 0.075¢ on both
surfaces.

2.5.1 Assessment of an anisofropic metric-based mesh-converged solution with GO error estimator

The NLF4016 dirfoil is run with the goal-oriented error estimator using the drag as the targeted functional.

The SA-BCM model, with fixed free-stream turbulence intensity T'u, is used fo calculate the
adapted RANS solution. The free-stream temperature is set at T, = 300 K and the free-stream
Turbulence Intensity at Tus, = 0.15%. according to the 1st AIAA Transition Modeling Workshop.
However, it should be stressed that an-induced transition by roughness is totally different by a by-pass
one induced by a fixed free-stream turbulence. Therefore there is no guarantee that the transition
point is the same as that measured in the experiments.

As previously done for the 2D flate plate calculation, the adaptive process for the SA-BCM model
is initialized with a corresponding SA adapted solution at 10 000 vertices. The process is stopped
when reaching a 300 000 vertices adapted mesh. A polar from 0° to 5° Angle of Attack each 1° is
investigated. The mesh and the solution, for AcA = 0° at 30 000 vertices for the SA and the SA-BCM
model are shown in Figure [T3] We can see that also in this case, the adaptive process manages to
adapt the mesh to the transition from laminar to turbulent flow.

The drag coefficient C'p evolution of SA and SA — BCM calculations during the adaptive
process is shown in Figure We can see that both calculations are mesh-converged at 150 000
vertices.

2.5.2 Transition point mesh-convergence

Figure |'|§] shows the convergence of the transition point during the adaptation process. As for the 2D
flat plate, the tfransition point converges to a specific location and it does not change anymore since
the 150 000 vertices-adapted mesh. This mesh-convergence is achieved for all the AoAs investigated.

26



NEXTAIR D1.2
GA No 101056732 | Assessment of transition models & their adjoints

Figure 13: 2D flow past the NLF4016 airfoil at AoA = 0°. (left) GO anisotropic metric-based mesh adaptation
for 30 000 vertices. Adapted mesh for the fully turbulent solution (left). Adapted mesh for the transitional
solution (right) . Pseudo-viscosity field 7 (middle) and streamwise velocity component field (bottom). Both
meshes are stretched along the wall-normal direction by a factor 5, to the transitional region.
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2D transitional NLF0416 airfoil: M=0.1 Re=4-10°
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Figure 14: 2D flow past the NLF4016 airfoil at AoA = 0°. GO anisotropic metric-based mesh adaptation.
Evolution of the Drag Cp coefficient during the adaptation process. Comparison between fully turbulent
calculation (blue curve) and fransitional calculation (red curve).

2D transitional NLF0416 airfoil: M=0.1 a=0° Re=4-10°
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Figure 15: 2D flow past the NLF4016 airfoil at AoA = 0°. GO anisotropic metric-based mesh adaptation.
Evolution of the Skin Friction C'y coefficient during the adaptation process. The solution is mesh-converged
at the 150 000 vertices adapted mesh.
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2.5.3 Adapted calculations at different Angles of Attack

The adaptive calculations at different Angles of Attack (AoAs) are shown in Figure [T8 In order fo
accelerate the convergence, each adaptive simulation is initialized at its corresponding adapted S A
solution at 10 000 vertices. The process is confirmed to be robust. As expected the drag Cp and
lift C, coefficients increase with increasing AoAs. Specifically, from Figure , we can observe the
transition point shiffing fowards upstream locations. This clearly means that fransition occurs earlier at
higher AoAs.

2D transitional NLF0416 airfoil: M=0.1 Re =4-10° 11 2D transitional NLF0416 airfoil: M=0.1 Re=4-10°
—e— Wolf (AcA = 0°) G/e—e——e—e—e —e— Wolf (AoA = 0°)
0.0095 —e— Wolf (AoA = 1°) 1.04 —e— Wolf (AoA = 1°)
0.0090 ~6— Wolf (AcA = 2°) I e —e— Wolf (AoA = 2°)
—eo— Wolf (AoA = 3°) 0.9 —e— Wolf (AoA = 3°)
0.0085 —e— Wolf (AoA = 4°) —e— Wolf (AoA = 4°)
—o— Wolf (AcA = 5°) !/9 —o—0—90 | o Wolf (AoA = 5°)
0.0080 0.81
5 S)
O 0075 0.71
0.0070
0.6 1
0.0065
0.0060 051
3
0.0055 0.4
104 10° 10% 10° 106 107
N N

Figure 16: 2D flow past the NLF4016 airfoil at different Angles of Attack. GO anisotropic metric-based mesh
adaptation. Evolution of the Drag C'p (left) and the Lift C';, coefficient, during the adaptation process. N
is the number of vertices of the adapted meshes.
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2D transition NLF0416 airfoil: M=0.1 Re=4-10°
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Figure 17: 2D NLFO416 GO anisofropic metric-based mesh adaptation. Evolution of the Skin Friction Cf
coefficient with the Angle of Attack AoA. The adapted meshes are composed of about 300 000 vertices.
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3 Contributions by DAV

In order to solve the RANS equations for compressible fluids, DAV uses the in-house AETHER code(10).
AETHER solves the RANS equations on unstructured grids with tetrahedra. It is based on a confinuous
finite element method with an entropic formulation, stabilized with the Streamline Upwind Petrov-
Galerkin (SUPG) method. Several one- and two-equation turbulence models are available including
the Spalart-Almaras, k—e¢, k—w, k— kL models as well as Reynolds-Stress-Models. For transition
modeling, the SST-2003-LM2009 and the Fehrs-2017 were originally available in the code, and
the SA-noft2-Gamma-Retheta was implemented in the framework of the NEXTAIR project. The
implementation of the SA-sLM2015 transition model is in progress: it is actually the main target of
DAYV (including its adjoint-based gradient) in the framework of NEXTAIR. Tapenade differentiation in
reverse mode (adjoint approach) has been successfully applied to the Fehrs-2017 model and the
corresponding procedure is currently in progress for the SA-noft2-Gamma-Retheta model.

3.1 Flow around the NLF(1)--0416 Airfoil

The first case is dealing with the NLF(1)--04616 isolated airfoil; the flow conditions can be found in|1.4.2
and are not repeated herein. Comparison with experimental data, (31), and numerical results obtained
by DAV (using the AETHER code) and NTUA (using the PUMA code) are presented for the k—w SST
and the Spalart-Allmaras turbulence models (without transition) and with the SST-2003-LM2015 and
SA-noft2-Gamma-Retheta fransition model in Fig. |E3| In both codes, the use of transition modeling is
absolutely necessary for meeting the experimental data with high accuracy. For a given model a good
agreement between the two codes is observed. Cross-code comparison enables to demonstrate the
correct implementation of models.

3.2 Flow and Adjoint Analysis around a Generic tail-less configuration

DAYV has also studied the flow around a generic tail-less configuration, Fig. The flow conditions are
My, =0.75, AoA = 3.5°. The pressure and the incompressible form factor are presented in Fig.
where the shock wave and the transition line are captured by the Fehrs-2017, transition model. The
difference between the fully turbulent and laminar simulations can be seen at the pressure coefficient
for a spanwise cut y = 6000mm in Fig.

Regarding the development of the adjoint method the sensitivity map for the pitching moment,
Fig. |7_2L provided by the adjoint (direct approach) with and without the **frozen fransition’” assumption
is compared with FDs in Fig. It can be seen that the **frozen transition”” assumption is harmful for the
accuracy of the computed gradients. This is also demonstrated, in more detail, in Toble

Gradient Cp Cy, Cy
FD2 -0.00949 | 0.1278 | -0.0147
Differentiated Transition -0.00961 | 0.1312 | -0.0141
Frozen Transition -0.00929 | 0.1046 | -0.0101
Frozen Turbulence and Transition | -0.00969 | 0.1025 | -0.0067

Table 2: Generic tail-less configuration: Gradient regarding the pitching rotation angle parameter.
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Figure 18: NLF(1)--0416 Airfoil: C'r, (C,) vs. C'p (C}) polar diagrams with the k—w S ST, the Spalart-Allmaras
and the SST-2003-LM2015 model. Experimental data are compared with numerical results from DAV (red
curve) and NTUA (blue curve).

Figure 19: Generic fail-less configuration: Geometry
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Figure 20: Generic fail-less configuration: Pressure field and incompressible form factor.
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Figure 21: Generic tail-less configuration: Pressure distribution with fully tfurbulent and transitional simulation
at a spanwise cut y = 6000mm.
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Figure 22: Generic tail-less configuration: Rotation axis: x = 10000mm, z = Omm
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Figure 23: Generic tail-less configuration: Absolute difference between FDs (with second order accuracy)
and linear gradient (AD Tapenade) with and without the “‘frozen transition’” assumption. Left: Linear
gradient with **frozen transition””. Right: Linear gradient with differentiated transition.
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